GCSE Computer Scieng¥ear 1 Topics

Content Overview

Assessment Overview

Computer systems

. Systems Architecture

° Memory

° Storage

. Wired and wireless networks

° Network topologies, protocols
and layers

. System security

. System software

. Ethical, legal, cultural and
environmental concerns

Computer systems

o 50%
80 marks
of total
GCSE

1 hour and 30 minutes
Written paper

(no calculators allowed)

Computational thinking, algorithms
and programming

. Algorithms *

° Programming techniques

. Producing robust programs

. Computational logic

. Translators and facilities of
languages

. Data representation

Computational thinking,
algorithms and programming

(02) 50%
i of total
1 hour and 30 minutes GCSE

Written paper

(no calculators allowed)

* Algorithm questions are not exclusive to Component 02 and can be assessed in either component.

Programming Project

. Programming techniques

. Analysis

. Design

. Development

. Testing and evaluation and
conclusions

Formal requirement

Consolidates the learning
across the specification
through practical activity.

20 timetabled hours

Assessment Objective

Science.

Analyse problems in computational terms:

. to make reasoned judgements

Demonstrate knowledge and understanding of the key concepts and principles of Computer

Apply knowledge and understanding of key concepts and principles of Computer Science.

. to design, program, evaluate and refine solutions.

Assessment Objective weightings in OCR GCSE (9-1) in Computer Science

The relationship between the Assessment Objectives and the components are shown in the following table:

% of overall GCSE (9-1) in Computer Science ()276)

Computer systems (J276/01) 19 27 4

Computational thinking, algorithms and
| programming (J276/02)

Total (%) 36% 45% 19%

17 18 15




During the end of 2019/2020 you will be revisiting and revising the topics you have cavered
Year 9 and 1@nd completingnanymini-tests to assess your current knowledge and the gaps you
havein your learningo be able toanswerthe questions orPaper 1 and Paper 2(/ou will also be
revisiting, revising and learning new skills for the NEA Task 1. This will consist of etoges

you information and demonstrations of new skills based around Python 3 programmingusdills
concepts As you progresgou will be given programming challenges to produce and praatice
constant revision to ensure you can remember key conckptboth exam papers and your
programming project.

The topics you will be covering are the following:

Learners should have studied the following:

o the purpose of the CPU
° Von Neumann architecture:
MAR (Memory Address Register)
MDR (Memory Data Register)
Program Counter
Accumulator
. common CPU components and their function:
ALU (Arithmetic Logic Unit)
CU (Control Unit)
Cache
. the function of the CPU as fetch and execute instructions stored in memory
. how common characteristics of CPUs affect their performance:
clock speed
cache size
number of cores
. embedded systems:
purpose of embedded systems
examples of embedded sytems.

Learners should have studied the following:

. the difference between RAM and ROM

° the purpose of ROM in a computer system
° the purpose of RAM in a computer system
o the need for virtual memory

° flash memory.



Learners should have studied the following:

. the need for secondary storage
. data capacity and calculation of data capacity requirements
. common types of storage:
optical
magnetic
solid state
. suitable storage devices and storage media for a given application, and the advantages and
disadvantages of these, using characteristics:
capacity
speed
portability
durability
reliability
cost.

= LIS LWIHILG L VI VI LUGE TIG LYWL R,

Learners should have studied the following:

. star and mesh network topologies
. Wifi:
frequency and channels
encryption
. ethernet
. the uses of IP addressing, MAC addressing, and protocols including:
TCP/IP (Transmission Control Protocol/Internet Protocol)
HTTP (Hyper Text Transfer Protocol)
HTTPS (Hyper Text Transfer Protocol Secure)
FTP (File Transfer Protocol)
POP (Post Office Protocol)
IMAP (Internet Message Access Protocol)
SMTP (Simple Mail Transfer Protocol)
. the concept of layers
. packet switching.

Learners should have studied the following:

° forms of attack
. threats posed to networks:
malware
phishing
people as the ‘weak point’ in secure systems (social engineering)
brute force attacks
denial of service attacks
data interception and theft
the concept of SQL injection
poor network policy
. identifying and preventing vulnerabilities:
penetration testing
network forensics
network policies
anti-malware software
firewalls
user access levels
passwords
encryption.



Learners should have studied the following:

. the purpose and functionality of systems software
. operating systems:
user interface
memory management/multitasking
peripheral management and drivers
user management
file management
. utility system software:
encryption software
defragmentation
data compression
the role and methods of backup:
s full
= incremental.

Learners should have studied the following:

. how to investigate and discuss Computer Science technologies while considering:
¢ ethical issues
legal issues
cultural issues
environmental issues.
¢ privacy issues.
. how key stakeholders are affected by technologies
. environmental impact of Computer Science
. cultural implications of Computer Science
. open source vs proprietary software
. legislation relevant to Computer Science:
The Data Protection Act 1998
Computer Misuse Act 1990
Copyright Designs and Patents Act 1988
Creative Commons Licensing
Freedom of Information Act 2000.



This component incorporates and builds on the
knowledge and understanding gained in Component
01, encouraging learners to apply this knowledge and
understanding using computational thinking. Learners
will be introduced to algorithms and programming,
learning about programming techniques, how to
produce robust programs, computational logic,

Learners should have studied the following:

° computational thinking:
abstraction
decomposition
algorithmic thinking

° standard searching algorithms:
binary search
linear search

° standard sorting algorithms:
bubble sort
merge sort
insertion sort

° how to produce algorithms using:
pseudocode
using flow diagrams

. interpret, correct or complete algorithms.

translators and facilities of computing languages and
data representation. Learners will become familiar
with computing related mathematics.

Learners may draw on some of this content when
completing the Programming Project.



Learners should have studied the following:

the use of variables, constants, operators, inputs, outputs and assignments
the use of the three basic programming constructs used to control the flow of a program:
sequence
selection
iteration (count and condition controlled loops)
the use of basic string manipulation
the use of basic file handling operations:
open
read
write
close
the use of records to store data
the use of SQL to search for data
the use of arrays (or equivalent) when solving problems, including both one and two dimensional
arrays
how to use sub programs (functions and procedures) to produce structured code
the use of data types:
integer
real
Boolean
character and string
casting
the common arithmetic operators
the common Boolean operators.

Learners should have studied the following:

. defensive design considerations:
input sanitisation/validation
planning for contingencies
anticipating misuse
authentication

. maintainability:
comments
indentation

. the purpose of testing

. types of testing:
iterative
final/terminal

. how to identify syntax and logic errors

. selecting and using suitable test data.



Learners should have studied the following:

. why data is represented in computer systems in binary form
. simple logic diagrams using the operations AND, OR and NOT
. truth tables
° combining Boolean operators using AND, OR and NOT to two levels
. applying logical operators in appropriate truth tables to solve problems
. applying computing-related mathematics:
b+

/

*

Exponentiation (#)
MOD
DIV

Learners should have studied the following:

° characteristics and purpose of different levels of programming language, including low level languages
. the purpose of translators
. the characteristics of an assembler, a compiler and an interpreter
° common tools and facilities available in an integrated development environment (IDE):
editors

error diagnostics
run-time environment
translators.



y B~ Nata reanrecentation
2.6 Data xf.:’!,ﬂ‘..’“u:f«‘ir.'al-,x!'

Learners should have studied the following:
Units

. bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte, petabyte
. how data needs to be converted into a binary format to be processed by a computer.

Numbers

. how to convert positive denary whole numbers (0-255) into 8 bit binary numbers and vice versa

° how to add two 8 bit binary integers and explain overflow errors which may occur

. binary shifts

. how to convert positive denary whole numbers (0-255) into 2 digit hexadecimal numbers and vice
versa

. how to convert from binary to hexadecimal equivalents and vice versa

. check digits.

Characters

. the use of binary codes to represent characters

. the term ‘character-set’

© the relationship between the number of bits per character in a character set and the number of
characters which can be represented (for example ASCI|, extended ASCII and Unicode).

. how an image is represented as a series of pixels represented in binary
. metadata included in the file
. the effect of colour depth and resolution on the size of an image file.

Sound

. how sound can be sampled and stored in digital form

. how sampling intervals and other factors affect the size of a sound file and the quality of its playback:
sample size
bit rate
sampling frequency.

Compression
. need for compression
B types of compression:

lossy
lossless.






